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The propagation of waves in slightly inhomogeneous dispersive media is conveniently 
described by a geometrical or kinematic theory. In  such frameworks the solution of 
the propagation problem is constructed by (a)  deriving a dispersion relation and 
determining its characteristic lines and ( b )  solving an equation expressing the con- 
servation of a field invariant like the wave action. This paper is concerned with the 
implementation of the last step under general field and boundary conditions. The 
method presented is based on the derivation of a variational system of differential 
equations for the geodesic elements of the wave front. The elementary cross-section of 
the wave front is obtained by integration and the principle of conservation of the 
field invariant directly yields the field amplitude. In  addition, suitable jump con- 
ditions are derived for treating specular reflexions a t  solid boundaries. The method 
is illustrated by specific problems of interest in aeroacoustics. 

1. Introduction 
The propagation of waves in a medium whose characteristic scale 1 and characteristic 

time 7 greatly exceed the wavelength h and period T = 2nlw may be easily described 
by means of a geometrical theory or in terms of the more recent theory of waves in 
slightly dispersive, inhomogeneous and nonlinear media. In  these formalisms, the 
solution of the propagation problem is constructed in three steps. 

A dispersion relation between the angular frequency o and the wave vector k is 
obtained in the &st step. The second step consists of the determination of the 
characteristic lines or ‘rays’ of the dispersion relation. Finally, in the third step, the 
field amplitude is calculated by solving an equation which generally exhibits a con- 
servation form and describes the invariance of a field property like the wave action 
along the characteristic lines. Depending on the area of physics this equation bears 
the name of Poynting theorem (electromagnetism), conservation of wave action 
(fluid mechanics) or adiabatic invariant (particle mechanics). 

The rays associated with the dispersion relation are traced in numerous analyses 
of wave propagation in inhomogeneous media, for instance in the case of electro- 
magnetic waves in the ionosphere, optical beams in graded index fibres, acoustic 
wave8 in the atmosphere or the ocean and seismic waves in the ground (see, for 
example, Quemada 1968; Marcuse 1972; Gossard & Hooke 1975; Urick 1975; Telford 
et al. 1976). 

The complete determination of the field (i.e. the third step in the solution con- 
struction) is performed in only a more restricted number of studies, and generally 
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on the basis of either particular analytic expressions or a far-field approximation. 
Kline (1961) shows, for instance, that it is possible to calculate the field amplitude if 
one knows the principal curvatures Rl and R, of the wave front along the charac- 
teristic trajectories. In  this case, the ratio of the intensities Il and I .  a t  two points of 
a trajectory may be written as a path integral: 

The field amplitude may then be deduced from the intensity. This method is, however, 
difficult to use in the case of propagation in an inhomogeneous medium, as the curva- 
tures l/Rl and l/R2 are generally unknown. 

Another method, extensively used in underwater acoustics, consists of establishing 
a relation between the field amplitude and the local ray density. After tracing a large 
number of trajectories in uniformly distributed directions it is possible to estimate 
this density, for instance by calculating the distance between adjacent rays. This 
procedure is, however, uneconomical in computation time and its precision diminishes 
as the range is increased. 

Also in relation to underwater propagation, several authors (Ugincius 1969; 
Solomon & Armijo 1971; Mackinnon, Partridge & Toole 1972) propose calculating 
the field amplitude by first obtaining the variation of the ray-tube cross-section along 
each ray. This may be achieved by integrating a set of ordinary differential equations 
along the characteristic lines. The methods given are, however, specific to underwater 
applications and consider only an inhomogeneous index. Furthermore, the derivation 
of differential equations for the ray-tube cross-section seems difficult in the case of 
propagation in anisotropic media. Nevertheless the ideas presented by Ugincius (1969) 
are of interest and will be given in a different form in the present paper. 

A slightly different track is followed by Chen & Ludwig (1973). Their procedure is 
based on the formulation of the differential equations for the ray-tube cross-section in 
terms of intrinsic co-ordinates defined by the ray bundle. A slight reduction in the 
number of differential equations is obtained in this way but the derivation of the 
differential system necessitates a considerable amount of algebraic manipulation. 
The method is also difficult to use in the case of acoustic propagation in a moving 
medium. 

The most complete and general analysis of the problem is given by Hayes (1970) 
in the context of the ‘kinematic ’ wave theory. Hayes bases the calculation of the field 
amplitude on the determination of the elementary ‘volume convected along the rays ’, 
i.e. the volume of a wave packet during its propagation. This volume may be obtained 
from the Jacobian of the transformation which maps the initial parameter space onto 
the ‘augmented’ space of positions along the ray (i.e. the space formed by the couples 
(position; time) along each ray). The Jacobian is in turn obtained by integrating a 
system of differential equations derived from the characteristic system. Hayes 
specializes his method to the case of acoustic propagation in a stratified medium and 
uses a numerical algorithm developed by Hayes, Haefli & Kulsrud (1970) to calculate 
the sonic boom in a stratified atmosphere. 

The method developed in the present paper is a variant of that proposed by Hayes 
(1970) and borrows some ideas from Ugincius (1969). 
The conservation equation is solved by calculating the variation of the elementary 
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wave-front section along each ray. The ray-tube cross-section is then obtained indirectly 
from the wave-front section. Indeed a direct calculation of the ray-tube cross-section 
would require the derivation of a complicated system of differential equations. In  
contrast, the differential equations defining the wave front may be instantly deduced 
from the characteristic system. 

The method is first presented ($3)  for the case of an infinite medium and then 
extended in $6  to the case where reflecting boundaries exist in the domain. This 
situation, important in numerous applications, is not considered by Hayes (1970) and 
complicated methods are generally developed to treat this problem (see Friedlander 
1958). We show that a certain set of jump conditions may be used to re-initiate the 
numerical integration when the characteristic trajectory is specularly reflected. 

The general method is specialized to the case of acoustic propagation in $$4 and 5 
and three examples of interest in the aeroacoustic domain are treated to illustrate the 
power of the geometrical theory when it is implemented through a numerical algorithm 
($7). The paper begins with a rapid outline of the basic results of the geometrical 
formalism. 

2. Basic results of the geometrical theory of propagation 
We refer the reader to classical textbooks and papers (e.g. Whitham 1974; Felsen & 

Marcuvitz 1973; Born & Wolf 1975) or to Candel (19763) for a more detailed presen- 
tation of the geometrical formalism. The main steps and results are worth summarizing. 

The basic problem is to construct the solution of a system of equations of the form 

L(V, apt;  x, t )  u(x, t) = 0. 

u(x, t) = uO(x, t) eiflx*t), 

(2) 

The solution is cast in the form of a local plane wave 

(3) 

where uO(x, t) is an amplitude vector and $(x, t) a phase function. In  analogy with 
wave propagation in homogeneous media, one defines a local wave vector 

k = V $  (4) 

and a local angular frequency w = - appt. (6) 

Expression (3) is then substituted in the system of equations (2) and the amplitude 
vector is expanded in an asymptotic series 

uo = u0+u1+u,+ ... . (6) 

The successive terms are ordered such that 

where 6 designates a small parameter of the order of the ratio of the wavelength to 
the characteristic length scale or of the period to the characteristic time scale of the 
medium. 

This procedure yields at zeroth order a dispersion relation D(w, k; x, t) = 0 which 
may be cast in the form 

w = Q(k,x,t). (7) 
16-2 
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The next orders lead to equations which may generally be written as 

aA,/at + V .  cgAn = f(un-l), (8 )  

C, = alR/ak (9) 

(10) 

(11) 

where c, designates the group velocity 

ant1 A,  is the ‘wave action’ associated with the u, term of the geometrical expansion 

A ,  = A,(u,, 0, k ;  X, t ) .  (6): 

In  B number of cases the first of equations (8), describing uo(x, t ) ,  takes a conservation 
form aAo/at + V . C ,  A ,  = 0. 

The dispersion relation (7) is conveniently solved by the method of characteristics, 
i.e. by tracing the rays defined by 

where dC/dt represents differentiation along the characteristic lines, i.e. 

dc/dt = a/at + c, . V. 

de$pt = - R + k .  aa/at. 

(13) 

(14) 

The phase is then obtained from the additional equation 

We are here concerned with the solution of the conservation equation ( I  1). A first 
step in that direction consists of showing that the action contained in a wave packet 
is conserved along each characteristic line (Whitham 1974, p. 389). To this end let us 
consider the total action contained in a ‘wave volume’ V(t) (a volume propagating 
at  the group velocity along the space-time rays as shown on figure 1 ; the wave volume 
is analogous to the material volume of fluid mechanics) : 

The variation of this quantity with respect to time may be obtained through the 
integral transport identity 

Application of Green’s theorem and use of the local equation ( 1  1) leads to 

d 
AodV = O ,  

which expresses the fact that the action contained in a wave volume is invariant. 
By specializing (17) to an elementary wave volume or wave packet 

dP’ = ~,Sadt, (18) 

one finds that 
along the characteristic lines. 

A,c,Ga = constant 
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Wave volumes 

FIUURE 1. Ray tubes and wave volumes. 

Now this invariance property is useful in practice if it is possible to calculate the 
variation of the elementary ray-tube cross-section 6a along the ray. The analysis of 
this problem is pursued in the next section. However, first it is worth describing the 
formalism which has been classica.1ly used in the case of time-independent media. 
There the solution is written in the form 

u(x, t )  = uo(x) exp{iko8(x) - iwt}, 

where the angular frequency w is constant in the domain. The dispersion relation is 
replaced by an Eikonal equation generally written in the form 

(20) 

(21) H ( x ,  VS) = H(x, p) = 0. 

The ray equations solving (21) become 

acxlaT = aH/ap, acp/aT = - aqax 

and the phase is given by a c s / a T  = p . aHlap. 

The conservation equation (1 1) then reduces to 

C.c,A,  = 0. (24) 

To fix ideas and allow better comprehension of $4, we have summarized the basic 
results of the geometrical acoustics theory in appendices A and B. 

3. Description of the solution method 
Variational system of equations 

We have just seen that a conservation equation of the form (1 1 )  could be solved by 
calculat,ing the variation of the elementary ray-tube cross-section along the ray line. 
We also pointed out, in the introduction, that this calculation is rendered difficult 
when tho medium is anisotropic. We propose instead to evaluate the elementary 
cross-section &Z of the wave front and then deduce &a by using the relation 

&a = 62 cos (v, a),  (25) 
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where u designates a unit vector in the wave-vector direction and P is a unit vector 
in the ray direction. 

Now to calculate XZ we are going to develop a system of differential equations for 
the geodesic elements of the wave front. We start from the characteristic system 
defining the characteristic trajectories €or the medium under consideration. If the 
medium is time independent the characteristic system is autonomous and may be 
cast in the general form 

The phase parameter does not appear on the right-hand side. The system requires 
five initial conditions, the sixth being obtained from the Eikonal equation 

dx/dS = f(x, p), dp/dS = g(x, p). (26) 

H(x,p) = 0. (27) 

When the medium is time dependent the characteristic system is not autonomous and 
an additional equation determines the local angular frequency : 

(28) 

Six initial conditions are then required, the seventh being deduced from the dis- 

(29) 
persion relation D(w, k; X, t )  = 0 

or o = Q(x, k, t ) .  (30) 

dx/dt = f(x, k, t ) ,  dkldt = g(X, k, t ) ,  dO/dt = h(x, k, t ) .  

One is generally concerned with families of ray lines having a reduced space of initial 
parameters. For instance one may consider the ray bundle radiated from a fixed 
source situated a t  x,. Then for a time-independent medium the ray lines are a function 
of two initial parameters such as the angles 8, and a, defining the initial wave vector. 
For a fixed source in a time-dependent medium the rays form a family with three 
initial parameters. 

For the sake of simplicity let us consider the time-independent situation. The 
position vector x and the wave vector p of a current point on the ray line are completely 
determined by the value of the phase parameter 8 and the initial angles 8, and a,: 

x = x(S,80,ao), P = p(S,~,,a,). (311, (32) 

Another interesting situation is that where the position of an ‘initial’ wave front is 
known. The wave front may be represented by an equation of the form 

S,(X) = 0, (33) 

or more conveniently, in terms of two initial parameters A, and p, which define a 

(34) 
two-dimensional subspace 

At these points, the unit wave vector is defined by 

x(0) = x,(A,,po). 

v = ax, ax -x+x-i ax, ax, = v(A,,p,) 
ah, ap0 ah0 ap0 

(35) 

and depends uniquely on the parameters A, and p,. Thus the position and wave 
vectors x and p on a ray originating from the initial wave front So depend onIy on the 
two initial parameters A, and p, and on the current value of the phase S. 

In the remainder of this paper we designate the two initial parameters by 8, and 
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a, and the phase by 8. We also specifically consider the time-independent case but 
note that a similar argument applies to the time-dependent situation. 

Now the elementary phase front may be computed from the local geodesic elements 

Re = (ax/as,ts, 9 Ru = (axlaa,),, g (36) 

through a vectorial product: 62 = Re x R'dO,da,. (37) 

The problem reduces to the determination of the geodesic elements of the wave front 
along the ray line. These elements are solutions of a system of differential equations 
which may be obtained by taking variations of the characteristic system with respect 
to  the initial parameters 60 and a, while keeping the phase constant. This procedure 
directly yields af 

R+-.Q, 

- = -  dQ ag R+%.Q, 

dR af 
drS=Z' ap 

d s  ax- ap 

where Q designates ' conjugate' elements defined by 

Qe = ap/aOo, &" = ap/aa,. (39) 

Very often, the wave-vector modulus appears explicitly in the characteristic system. 
Its variation with respect to the initial parameters is obtained by differentiating 

aplae, = v .  QO. (40) 
P = (P.P)*: 

This expression will also be used in the next subsection. 

Initial conditions ($xed source) 

The differential system (38 )  requires appropriate initial conditions, which we are now 
going to derive. To obtain the initial geodesic elements Re(0) and R"(0) we expand 
the position vector as a Taylor series near the origin, 

x(8) = x(0) + Bf(x(O), P(0)) + 0(S2), (41) 

and then differentiate this expression with respect to the initial parameter So or a,. 

ax af This yields 
Re(0) = lim - = limX 

s+Oa@, 8 + 0  

and a similar expression for Ru(0). The term contained in the brackets is generally 
bounded and the geodesic elements vanish at the origin: 

Re(0) = Ra(0) 0 (43) 

(as the ray tube reduces to a point at the source, this result could have been 
anticipated). 

Now a similar argument provides Qe(0) and Qa(0). We start from 

P ( 4  = P(0) + &I(x(O), P(0)) + 0(d2) (44) 

and obtain (45) 
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or by substituting (40) in (45), 
av 

800 
Qe(0) = [I - V ~ V ~ ] - ~ .  2 ~ ( 0 ) .  

In  summary, the geodesic elements defining the elemental wave-front area may 
be calculated by integrating twelve ordinary differential equations in addition to the 
six characteristic equations. Five initial conditions are required (e.g. the source position 
and two initial wave-vector angles), the other conditions being determined as shown 
above. 

Theoretical considerations 
The method proposed resembles the parameter differentiation procedure used to 
solve two-point boundar y-value problems and also the sensitivity analysis of first- 
order differential systems. All these methods are founded on classical theorems of the 
theory of differential equations and it is worth recalling some of these results. We refer 
the reader to Struble (1962) for a detailed account. 

We here consider systems of equations of autonomous or non-autonomous type 
which may be cast in the general form 

dx/dt = f ( x ,  a, t ) ,  x (0 )  = c,  (47h (48) 

where a represents a set of j parameters. For such systems one can show the following. 
(i) A solution exists in the neighbourhood of t = 0 if f is a continuous function of 

x and t and satisfies certain Lipshitz-type conditions. 
(ii) This solution has kth-order continuous derivatives in the variables a and c if 

f has kth-order continuous derivatives in the j + n + 1 variables comprising a, x and t. 

(49) 
Furthermore the matrix x = axlac 

obtained by differentiating the solution of system (48) with respect to the set of 
initial conditions satisfies the matrix equation 

where af/ax is the Jacobian matrix and I XI the determinant (or Jacobian) of the 
transformation which maps the initial vector space defined by c onto the position 
vector x( t ) .  The columns of this matrix may be identified as the geodesic elements of 
this mapping. 

The system derived in the previous subsection for the geodesic elements of the 
wave front is just the restriction of (50) to the two-dimensional space defined by the 
initial parameters 0, and ao. The matrix X has in that case two rows and six columns 
and (50) represents twelve differential equations. 

The significance of the variational system (38) may be clarified if one refers to the 
principle of conservation of the wave action transported by a wave packet: 

AodV = constant. (61) 

In  this expression the wave-packet volume d V  may be evaluated from the Jacobian 
of the transformation which maps 0,, a. and t onto the position vector x :  
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The first two rows of this Jacobian are the geodesic elements Re and R e  and the 
components of the group velocity appear in the third row, so that 

d V  = cD. Ro x Rad#,da0dt, (531 

or d V  = c,.SZdt = cD8adt. (54) 
This indicates that the Jacohian may be calculated from the elemental wave-front 
area, and the conservation principle (51) then directly yields the field amplitude. 

The preceding theorems show that the characteristic system possesses a solution 
in a neighbourhood of the origin. Under certain conditions, differentiation of this 
system with respect to the initial set of parameters is justified and the resulting equa- 
tions define a transformation between the initial parameter space and the current 
wave front and allow the calculation of the elementary wave-front cross-section 8Z. 

Accuracy and validity of the method 
An aspect which is worth underlining is the existence of two criteria allowing an 
estimation of the accuracy of the numerical solution. The fist criterion consists of 
verifying that the characteristic system indeed provides a solution of the Eikonal 
equation (or of the dispersion relation). In  the case of acoustic propagation (see next 
sections) we actually compare the wave-vector modulus obtained by integration with 
the modulus given by the Eikonal equation: 

p = N/( l+M.v) ,  (55) 

where M is the Mach number vector. The second criterion concerns the calculation of 
SC. The elemental area is determined vectorially by its three components. It is 
possible to verify that the vector obtained is parallel to the direction of the local wave 
vector. For this purpose it is sufficient to  form the ratio 

]8C-SZ.VI/8Z (56)  

and verify that its value remains almost zero. 
Indeed in all cases treated with the geometrical acoustics algorithm this ratio was 

found to be smaller than for an integration step 8S/D = 0.04 ( D  represents a 
characteristic geometric scale like the initial diameter of a jet flow). Very often the 
medium of propagation changes on a scale 1 which may be smaller than D and the 
ratio 8S/l of the integration step to this scale would reach values of the order of 0.3. 
The precision of the integration (performed with a fourth-order Runge-Kutta pro- 
cedure) is nevertheless maintained. 

4. Acoustic propagation in an inhomogeneous moving medium 

an inhomogeneous medium in steady motion. 
We now specialize the general method to  the case of acoustic wave propagation in 

Variational system 
The characteristic system becomes in this case (appendix B) 

dx/dS = N-'(v + M), 

d p / d 8  = N-'[VN- (VM) . p]. 

(57a) 

(57 b )  
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Taking the variations of this system with respect to one of the initial parameters 
gives 

( M  +') ( R .  V N )  +$ ( R .  V M ) ,  d R  1 (Q Q)-- dS=g N2 
1 -- dQ - 1 [R .VVN - R .  (VVM) .p  - ( V M ) .  Q]  -N2 ( R . V N )  [VN - ( V M ) . p ] .  

dS N 
( 5 W  

Some ambiguities arise in the vectorial notation used in the preceding expressions 
so it  is worth giving the indicia1 form of these equations: 

1 
(Mi + ~ , a ,  N +z ~ , a ,  M ~ ,  dRi 1 - = - ( Q i - ~ i v j Q j ) -  N2 dS p N  (594  

1 1 -= -  dQi [R, a, ai N - Rj( a, aiMk)pk - &,a&,] - ~2 B, ajW[aiN - p k  aiMk]. (59 b)  dS N 

The first three equations of this system give the rate of variation of the geodesic 
element R and involve only first-order derivatives of the Mach number and index. 
The last three equations define the conjugate elements and require second-order 
derivatives of the local properties N and M .  

Initial conditions 
We consider the caRe of acoustic radiation from a point source and specialize the 
general set of initial conditions given in $ 3  to this particular situation. 

We already know that the geodesic elements vanish a t  the source: 

Re(0) = R"(0) = 0. (60) 

To get the conjugate elements Qe(0) and Qa(0) we may resort to expression (45) ,  
which we are now going to write out more explicitly. First we choose a Cartesian 
system x, axis is parallel to the flow direction at the source. The unit vector Y, in the 
direction of the initial wave vector has components 

vol = cos So, vo2 = sin 0, cos a,, v,, = sin 8, sin a, (61) 

(62) 

and the Eikonal equation at the origin is independent of the angle a,: 

p(o)  = N,/ (I  + M, COS 8,). 

Then the initial components of the conjugate elements Qe and Q" are 

Q ~ ( o )  = p ; ~ ,  sin 8, cos B,/N, -po sin O,, 

Q;(o) = p;  M, sin28, cosao/N, + p ,  cos 8, cosa,, 

Q!(o) = p;M, sin2 0, sin a,/N, + p ,  cos 8, sin a,, 

Qf(0) = 0, 

QZ(0) = -p,sin6,sina0, 

Qs(0) = I), sin 8, cos a,,. 

Numerical implementation 

(63) 

The calculation of the acoustic field reduces to the integration of a system of 18 
differential equations formed by the six characteristic equations, six variational 
equations for the direction 8, and the corresponding six equations for the direction u,,. 
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Initial conditions for the numerical integration are obtained by giving the source 
position x0 and the initial wave-vector angles 19, and ao. The Eikonal equation then 
yields the wave-vector modulus at the source. The other initial values are obtained 
from expressions (60) and (63). The numerical algorithm used to implement this 
procedure is also able to account for reflexions at solid boundaries. This is achieved 
by interrupting the numerical integration when the ray reaches a solid boundary. 
Upon this occurrence a set of jump conditions (see $6)  is used and provides the new 
values of all the variables. The numerical integration may then proceed until the 
next reflexion occurs. 

5. Acoustic propagation in an inhomogeneous medium at rest 
In  $4  we established the system of equations which allows the calculation of the 

geometric acoustic field propagating in an inhomogeneous medium in steady motion. 
In  certain important applications the medium may be considered to be at rest and it 
is therefore worth restating the system of equations in this particular situation. 

The characteristic system becomes in this case 

and the variational system becomes 

The initial conditions also simplify: 

Re(0) = Ra(0) = 0, 

Q e ( 0 )  = No~v0/&9,, Qa(O)  = N o ~ o / d a o .  (66b) 

The system formed by (64) and (65) together with initial conditions (66) allows the 
calculation of the geometric acoustic field in a medium at rest whose index N is a 
function of the three spatial co-ordinates. 

This extends the classical treatments of the problem, which are in general based 
on the assumption that the medium is stratifiedin the vertical direction. 

6. Reflexion at solid boundaries 
In  a large number of practical problems, the propagation medium contains (or is 

surrounded by) solid boundaries which partially or totally reflect incident waves 
In underwater acoustics, for example, reflexions off the ocean bottom or surface arc 
of key importance. 

We analyse in this section the problem of specular reflexion in the case of boundaries 
of arbitrary shape imbedded in an inhomogeneous moving medium. We assume thal 
the reflexion may be treated in the geometrical framework and this implies that the 
principal radii of curvature are large compared with the wavelength. 

Before starting it is worth noting that classical treatments of reflexion generalIj 
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7 
FIGURE 2. Reflexion geometry. 

consider the propagation medium to  be homogeneous and at rest and are based on 
analytical expressions for the ray-tube expansion. This approach is exemplified by 
Friedlander (1958) and Pock (1965). Such a method is difficult to use in the case of an 
inhomogeneous moving medium and besides it does not allow a simple algorithmic 
implementation. 

Our treatment is essentially different from the classical approach. It is based on the 
derivation of ‘jump ’ conditions to account for the discontinuities associated with the 
specular reflexion of the characteristic trajectories. The jump relations serve to 
re-initiate the numerical integration, which has to be interrupted upon reflexion. The 
method has some resemblance to the shock-fitting procedure of wave physics for a 
shock whose position is known in advance. 

It is worth starting by detailing the geometry of the problem (figure 2): b designates 
the unit normal to the surface 9 a t  the reflexion point B, JV is the plane formzd by 
the incident ray and the normal b, V designates the tangent plane at B and b is a 
unit vector lying in the V plane and normal to JV at B. 

Jump  condition for the unit wave and ray vectors 
The wave vector is specularly reflected, so that its normal component reverses (or 
flips) while its tangential projection on V is conserved: 

v,.A = -v2.A,  (67) 

V1-(b.V1)fi = v2-(b.v2)b.  (68) 

v2 = v1-2(v1.b)fi. (69) 

(70) 

When combined these expressions yield 

If square brackets are used to denote a discontinuity the preceding expression becomes 

[v] = - 2 (Y1. b)b. 

The unit wave vector after reflexion is obtained by subtracting from the incident 
unit wave vector twice its component in the normal direction. 

The jump condition for the unit ray vector may be derived from expression (69). 
For this we note that the flow velocity vector is tangential to the solid boundary (we 
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assume for the moment that the velocity remains finite at  the wall and postpone the 
discussion of the influence of the boundary-layer structure to the end of this section). 
In  consequence the projection of the unit wave vector on the velocity vector remains 
invariant, so that IUl+MI = I u ~ + M J .  

Adding the Mach number vector to both sides of (69) and then dividing by (71) leads to 

(71) 

or ?l2 = 21-2(21.fi)fi. (73) 

The unit ray vector exhibits the same type of discontinuity as the unit wave vector. 

Conditions for the geodeaic and conjugate elements 
To derive the condition for the geodesic element R we first desompose this vector 
into its projection RN on the normal plane and Rb on the vector b : 

A 

R = Rx+Rbb. (74) 

RN = R - ( R . b ) b  (75) 

Since R and 2 are both perpendicular to the wave vector the projection 
h A  

is also normal to the wave vector. This component undergoes specular reflexion with 

RN2 = RNl-2(RN1.fi)fi. (76) 
its modulus conserved: 

Turning now to the Rb component, it  is easy to see that this remains invariant, so that 

RbZ = Rbl* (77) 

R, = R1-2(Rl.fi)fi. (78) 

By adding these two expressions we get 

Thus we see that the geodesic elements ‘jump ’ like the unit wave and ray vectors. 
The derivation of the jump relation for the conjugate element is a little more com- 

plicated. It is first useful to note that the wave-vector modulus is a conserved quantity: 

= 0. 
N - N 

p z - p l  = i + M . v ,  l + M . v l  (79) 

We may therefore multiply both sides of (77) by the wave-vector modulus at  point B :  

Pz = P1-2(P1.fi)fi. (80) 

Taking the variation of this expression with respect to one of the initial parameters 
(for instance 8,) yields 

Qt = Q!-2(Q;.fi)fi-2~ - 

The variation of x associated with the variation of the initial parameter appears in 
the last term. To get an expression for (axlaOo), we note that the reflexion points lie 
on the solid surface 3 and satisfy 

Q(X(80,%,S)) = 0. (82) 
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The parameters a0, So and S are therefore not independent and thus 

I n  addition differentiation of (90) yields 

On combining (83) and (84) we get 

A x  (Re x 2 )  
which may be written as 

It is also necessary to evaluate aii/ax by differentiating 

ii = VG/lVGl. (87) 

(88) A few calculations lead to Hi/ax = 1VGl-l ( I  -A& .)VVG. 

Thus the jump condition for the conjugate elements is slightly more complicated 
than those derived previously for v, f, p and R. 

The last term in (81) has the order of magnitude of the principal curvatures of the 
reflecting surface. It may be neglected if the curvature is vanishingly small. In  that 
case 

and the quantities p, v, %, R and Q all exhibit the same kind of discontinuity. 
Up to now we have assumed that the flow velocity remains finite a t  the wall. In  

reality a boundary layer forms and the flow velocity changes rapidly and vanishes at 
the surface. In  general the boundary-layer thickness is much smaller than the acoustic 
wavelength of interest and the fine-structure of the velocity profile in this region does 
not produce a significant deviation of the characteristic rays. Therefore it is not 
necessary to simulate the flow field in the boundary layer. One may simply assume 
that the free-stream velocity is also the velocity at the boundary. 

7. Examples of applications 
Our aim in this section is to illustrate some of the possibilities of the geometrical 

technique. For this purpose we selected some problems of current interest in aero- 
acoustics. Other applications are described in Candel (1975, 1976a, b )  and Candel, 
Guedel & Julienne (1975, 1976). Other attempts to use the geometrical approximation 
to deal with aeroacoustic problems have been made in the past by Csanady (1966), 
Schubert (1972) and Belleval et al. (1975). Schubert’s and Csanady’s work relies on 
analytical expressions of Blokhintsev’s principle of conservation of acoustic energy 
and the treatment requires use of the geometrical solution in the far field. This approach 
is questionable in that the geometrical solution becomes invalid beyond the diffraction 
limit. A recent attempt to overcome this difficulty is presented by Balsa (1976). 

In  the present work we construct the geometrical solution numerically and the 
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field amplitude may be calculated at all distances within the diffraction limit, pro- 
viding the pressure distribution in the geometric near field. 

Acoustic radiation from a hot subsonic jet 
This problem is relevant to the study of high frequency jet noise radiation and to the 
analysis of propagation of internal noise from the nozzle exit plane through the jet. 
We consider a jet issuing from a convergent circular nozzle at an initial speed of 
390m/s and a static temperature of 870 OK (this operating regime was selected because 
it had been extensively used at ONERA for basic noise research). 

The mean aerodynamic jet structure has been determined by classical methods. 
By making use of the similarity properties of the initial and developed regions it is 
possible to simulate the complete structure analytically: for this we write the velocity 
and temperature ratios in the form 

AU U - U o  1 auo = 2 = u0,- uo, 

These radial profiles are complemented by the axial variation of the shear-layer 
thicknesses 8, and ST, the jet radii R, and RT and the decay laws for the velocity and 
temperature on the jet centre-line: 

AUo = AUo(x,), AT = ATo(z l ) .  (92) 

The preceding representation accurately describes the initial jet region but some 
precision is lost in the developed region, where the radial profiles (90) and (91) exhibit 
a broader peak than the experimental distributions. Nevertheless we adopt this 
description for its simplicity and because it retains most of the features of the mean 
aerodynamic field encountered in jet flows. 

Figure 3 shows a few typical profiles for the index N and Mach number M traced 
for the axial sections x1 = 0.50, 1-50, 3 0  and 50  (0 = initial jet diameter). The 
reference sound speed co appearing in the numerator of the index is that of the outer 
region surrounding the jet. The index is equal to unity in that region and decreases 
towards the jet centre-line. The mean aerodynamic structure is axisymetric and 
exhibits strong gradients in the radial direction and slower axial variations. The 
medium is not stratified and the Descartes-Snell law does not apply. In  any event 
this law, which facilitates analytical studies of geometrical propagation, provides only 
marginal simplifications in the numerical calculation of the geometric field and we 
prefer to perform the computations without reduction of the degree of generality. 

Let us fist consider the radiation of wave trains from a point situated on the jet 
axis (in our example x1 = 2 0 ,  x2 = 0, z3 = 0). It is easy to show that the characteristic 
lines are plane trajectories (see, for instance, Candel 1976a,b); they are traced on 
figures 4 (a)  and ( b )  in the xl, x2 plane (a = 0) for a uniform distribution of initial wave- 
vector directions. The angular increment separating two successive wave vectors is 
AOo = 10". The ray lines are straight in the uniform regions and exhibit a finite curva- 
ture in the regions where the velocity and temperature gradients are non-zero. 

Downstream the trajectories become concave towards the outer region. In  the 



480 8. M . Carutel 

I 

1 1  I I ,  

0 1 2 3 ' 4  5 6 7 
X J D  

FIQURE 3. Aerodynamic mean field of a hot subsonic jet. The radial profiles of the Mach number 
M and index N are represented for four axia,l sections: xl = 0.50, 1.5D, 3 0  and SD. U; = 
390 m/s, = 870 OK, Ui = 0, fl  = 283 OK. 

upstream region the rays bend towards the axis and certain characteristic lines exhibit 
large curvatures and are trapped inside the jet flow. In  this situation the geometrical 
representation becomes inaccurate as a large amount of acoustic energy abandons the 
ray tube and is diffracted into the outer region. Figure 4 (a) also shows that the ray- 
tube cross-section changes rapidly in the downstream direction (around 0 - 30') and 
from this observation we anticipate a decrease in the field amplitude in that region, 
In  addition we notice that, after the initially rapid increase in the ray-tube section, 
the ray beam expands very slowly in the downstream region. If we were to compute the 
field amplitude at a large distance from the jet, this would lead to a very large ampli- 
tude. However, because of wave diffraction the geometric solution is limited in range 
and should not be applied to calculate the far field. For this reason we are going to 
calculate the field amplitude at a finite distance from the source in a region we call the 
geometric near field. This point is worth further discumion. 

We distinguish three different domains in the case of acoustic radiation from an 
inhomogeneous region : 

(i) the hydrodynamic near field, which extends to about one wavelength from the 
source; 

(ii) the geometric near field, which is bounded in range by the diffraction limit 

(iii) the far field, which lies beyond the diffraction limit ( r  > rB). 
In  the case of radiation from an aperture having a diameter D the diffraction limit 

is known to be rD - D2/A. For radiation from an inhomogeneous medium the 'effective 
diffraction aperture ' ia not defined rigorously but we may infer that it is proportional 
to  a characteristic scale of the flow field and that it depends on the degree of 

( r  < r D ) ;  
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FIUTJRE 4. Typical ray tracing. Aerodynamic conditions as in figure 3 with the source at x; = 2 0 ,  
xi = 0, x: = 0. (a) Plan view. (b)  Isometric perspective showing the position of successive phase 
fronts. 

inhomogeneity. Thus rll f (6NG/NG) D2/h, (93) 

where f is an unknown function which decreases when 6NG/Na, the relative variation 
of the generalized index, increases. The distinction between the geometric near field 
and the far field is not generally taken into account and numerous studies based on 
the geometrical approximation use the geometrical solution to calculate the far-field 
radiation. This leads in many cases to  physically unacceptable results. For this reason 
we shall only use the geometrical algorithm to  calculate the near-field amplitude. 
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FIGURE 5. Observation sphere. The sphere is centred on the source and the x1 
axis is parallel to the jet axis. I3 = (8xl, SP), 01 = (Sx2, SP,). 

Now a convenient way to represent the effects of refraction on the radiated sound 
field is to define a transmission ratio 

this ratio is calculated between two points rl and r, lying on the same ray. The first 
point rl is situated in the vicinity of the source while the point r2 is located on a 
'sphere of observation' centred on the source. The radius of this sphere is of the order 
of a few nozzle diameters, so that the observation points may be considered to lie in 
the geometric near field (figure 5). To allow a planar mapping of the sphere we define 
the angular co-ordinates 6' and 01 with respect to a Cartesian system whose origin 
coincides with the source: 

8 ( -  180" < 6' 6 + 180O) is a latitude measured with respect to  OX,;  
01 ( -  90" < a < 90") is a longitude which designates the angle between the axial 

plane passing through the point of observation r2 and the horizontal axis OX,.  

The transmission ratio defined by (94) contains a factor r,/r, which compensates 
for the spherical divergence effect. When the propagation medium is uniform or a t  
rest, the transmission coefficient becomes unity. In a region where the gradients are 
non-vanishing the transmission ratio differs from unity and thus characterizes the 
effects associated with refraction. 

Figure 6 presents the transmission coefficient corresponding to the ray tracing in 
figures 4(a) and (b) .  The calculations were performed between points situated on a 
small sphere rl = 0 .10  near the source and the points on the observation sphere 
r ,  = 3 0 .  The coefficient is less than unity (OdB) in the downstream (8 N 30") and 
upstream (6' N 120") regions. It exceeds unity in the forward region around 6' 60" 
and exhibits a maximum of about 4.4 dB. The distribution appears 'heart shaped' 
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FIGURE 6. Transmission-coefficient distribution corresponding to the ray tracing in figure 4 (a). 
r, = OsID, rl = 3 0 .  A unit transmission coefficient is represented by 0 dB. 

e 

21 I I 1 I I I I I I I I 

- 180" - - 90" 0 
0 

90" 180' 

FIUURE 7. Geometrical expansion coefficient a (circles) and transmission coefficient T (squares) 
corresponding to the ray tracing in figure 4(a). r, = O.lD, r2 = 30 .  

and resembles the radiation patterns characteristic of jet noise. This feature becomes 
particularly evident if the transmission-coefficient distribution is compared with the 
radiation diagrams of jet noise traced for the higher frequency bands. This comparison 
is carried out in Candel (19763) and it is shown that for a +octave centred on the 
Strouhal number X t  = 5 (i.e. for f D/Up = 5) the calculated and experimental diagrams 
coincide almost exactly. We refer the reader to this reference for further discussion 
of this point. 

Now, to allow some interpretation of figure 6,  we give in figure 7 the distribution 
of the 'divergence or geometrical expansion coefficient ', defined as the ratio 

This ratio differs from unity when the wave-front elementary area ceases to be pro- 
portional to the square of the distance to the source. This deviation, evidently related 
to refraction, occurs in particular in the downstream region, in the neighbourhood of 
the jet axis. In  that region we have already noticed that the ray-tube cross-section 
grows more rapidly than the square of the polar distance. In  other words, the ray 
tube expands rapidly and the amplitude diminishes as a consequence of the conserva- 
tion principle (1  9). 
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e 
FIQTTRE 8. Variation of the transmission coefficient with the jet temperature for a constant 
Mach number. x! = 20,  x: = 0, x: = 0. ., U! = 390 m/s, T! = 870 OK; 0, U! = 323 m/s, 
q = 600 OK; +, fl = 228 m/s, q = 300 OK. 

We note, in contrast, that in the upstream region the wave-front area nearly 
increases like the distance squared (a N 1). This time the amplitude diminishes as a 
direct consequence of the presence of the flow. This may be seen by returning to the 
conservation principle (19). The conserved quantity is the flux integrated over the 
ray-tube cross-section (appendix B) : 

(I1,2/pc) (1 + M . v) Iv + MI &a. (96) 

By making use of &a = 6X(l+M.V)/Iv+MI (97) 

expression (96) may be rewritten in the form 

(n%/pc) (1 + M .v)2SX. 

Now if the cross-section SI; grows like distance squared the conservation of (98) 

(99) 
implies that nor N c-*( 1 + M . v)-' N !Pi( 1 + M . v)-l. 

The product nor varies like the temperature to the power - 2 and also like the recip- 
rocal of the factor 1 + M . v. For a wave vector directed upstream, 1 + M . v increases 
from the interior to the exterior of the jet and the product nor  decreases, explaining 
the behaviour of the transmission ratio in the upstream region. The temperature 
dependence is also exhibited by the calculated transmission coefficients in figure 8. 
The temperature is varied while keeping the initial Mach number constant and equal 
to 0.69. The maximum value of the transmission ratio decreases when the temperature 
decreases and the position of the maximum shifts towards the jet axis. In  the down- 
stream region 1st < lBmaxl the transmission coefficient depends weakly on the tem- 
perature. Upstream it increases like Ti. 

To complete this analysis of radiation from the jet axis we present a plot (figure 9) 
of the successive wave fronts associated with the ray trajectories in figure 4(a ) .  
Between each wave front the parameter S / D  is incremented by AS/D = 0.4 and the 
corresponding propagation time may be found from 

AT = AS/co = O*4D/c0. (100) 

The initially spherical phase fronts are convected by the inner jet flow and distorted 
in the shear region. Their final appearance is that of a heart. 
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FIQURE 9. Wave fronts for the ray tracing in figure 4 ( a ) .  

Acoustic radiation from a nozzle exit 

This second example is of interest in the case of engine bore noise radiation. The problem 
was treated previously by, for instance, Mani (1973), who assumed modal propagation 
and a plug flow to represent the jet. Our purpose being strictly illustrative, we consider 
the simplest situation of a point source radiating from inside a channel containing 
a uniform flow. At the end of the channel we assume that a free-jet type of flow is 
for me d . 

A ray tracing corresponding to this situation appears on figure 10. Certain rays 
propagate directly towards the external region. Others are first reflected by the channel 
walls before escaping from the channel. Upon refraction by the jet flow, some of 
these rays are directed towards the upstream region and reach points situated in the 
shadow of the channel walls. These particular rays correspond to waves emitted by 
the source with a wave vector oriented upstream but convected downstream by the 
uniform flow. 

The transmission-coefficient distribution corresponding to this situation is shown 
on figure 11.  It exhibits two branches, the first corresponds to the direct rays, the 
second to the rays undergoing a single reflexion. The discontinuity which exists 
between the two branches is essentially due to the difference in arc length between 
the direct and reflected rays. In reality the discontinuities exhibited by the geo- 
metrical field are compensated by a diffracted field. However the diffracted field is 
not calculated by the present algorithm. 

Three-dimensional refraction by a jet $ow 
Three-dimensional refraction effects have not been analysed extensively in the past. 
They may be of considerable importance in the case of flows which are not axisym- 
metric (elliptical, rectangular or notched nozzles). More generally, such effects arise 
when the radiation originates from a point situated off the jet axis. This case is 
analysed here. 
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FIUURE 10. Ray tracing for a source situated inside the nozzle. 
Aerodynamic conditions as in figure 3. 
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FIUURE 11. Transmission coefficient corresponding to figure 10. 
rl = O.lD, rz = 3 0 .  B, direct rays; 0, reflected rays. 
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A first three-dimensional effect is made evident by the ray tracing for a source 
placed off the jet axis. This is exemplified by figures 12 (a)-(c). The rays are launched 
in a horizontal plane and the source is situated above the jet axis a t  3 = 6D,  z! = 0, 
x: = 0.6D. The rays escape from the initial emission plane and clearly appear as three- 
dimensional trajectories. Further evidence is provided by figures 13 (a)-@), which 
show the ray tracing for a source situated in the horizontal plane and an initial 
emission plane a@ = 45" parallel t o  the jet axis. 

Now, by varying the initial angle a. and plotting the points of intersection of the 
ray families with the sphere of observation we obtain a first set of contours (figure 14). 
These contours curve away from the initial emission planes (ao = 30, 46, 60, 76 and 
go"), which would appear as horizontal lines on figure 14. We note that in the right 
hemisphere (the hemisphere situated on the source side of the jet axis) the rays 
penetrate the sphere, below the emission plane in the downstream region and above 
that plane in the upstream direction. The inverse effect is observed in the left hemi- 
sphere. All the contours have a common point in the right hemisphere corresponding 
to the ray whose initial wave vector is parallel to the jet axis (8, = 0). 

Figure 14 also displays the contours of constant transmission coefficient. A strong 
maximum appears in the right hemisphere ( + 7.4 dB) in the horizontal plane a = 0 
at about 8 = 66". The transmission coefficient remains greater than unity in an 
elongated domain surrounding that point and extending beyond a = 90" into the left 
hemisphere. There the coefficient exhibits a local maximum of 2.4dB at a = 0 and 
8 - - 67" but its value is greater near the poles a = k 90°, where it exceeds unity by 
about 3.1 dB. This map shows that the jet acts as a partial shield for radiation in 
the left hemisphere while it enhances the field amplitude in the right hemisphere. 
This behaviour may be essentially ascribed to geometrical modifications of the ray 
tubes. 

The region surrounding the jet axis (6 = 0) is reached by a small number of 
'exceptional' rays with a reduced transmission coefficient. In  this way a region of 
silence forms, bounded by 6 - 35" in the right hemisphere and by 8 N -30" in the 
left hemisphere. This region is approximately conical with a half-angle of about 30". 
In  reality diffraction and scattering effects prevent the formation of a region of 
vanishing amplitude. The transition between the region where the transmission 
coefficient reaches its maximum and the neighbourhood of the jet axis is also more 
gradual than is predicted by the geometrical approximation. 

To conclude this section, it is worth comparing the present results with those 
obtained in the case of radiation from the jet axis. This comparison is simplified by 
plotting the transmission coefficient of figure 6 as contours on the observation sphere 
(figure 15). In  this representation the contours appear as vertical (8 = constant) lines. 
The transmission coefficient reaches a maximum of 4.4 dB above unity a t  B - & 67" 
and a region of silence exists in a downstream cone having a half-angle of 30" and 
surrounding the jet axis. The deformation of the transmission-coefficient distribution 
is made apparent by comparing figures 14 and 15. 
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FIGURE 12. Ray tracing for a source situated off the jet axis at xf = BD, xi = 0, xi = 0.60.  
Rays emitted in the tco = 0 plane. (a) Projection on xl, .z2 plane. (b)  Projection on xl, xs plane. 
( c )  Projection on x2, xQ plane. 

8. Concluding remarks 
We have developed in this paper a method for solving the conservation equations 

describing the propagation of linear waves in slightly inhomogeneous and dispersive 
media. The method, based on differentiation of the characteristic system with respect 
to the initial parameter space, is well suited for numerical implementation. The 
method also applies to cases where the field is reflected by solid boundaries. This has 
been achieved by deriving a set of jump conditions which serve to re-initiate the 
numerical integration when a reflexion occurs. 

The numerical algorithm thus allows the treatment of fairly general problems and 
its possibilities have been illustrated by analysing a few examples of importance in 
aeroacoustics. 

We note however that the computation cannot be performed in the vicinity of 
caustics. There the ray-tube cross-section vanishes and the field amplitude becomes 
infinite. The first-order geometrical solution breaks down under these conditions. The 
method does not apply either to cases of nonlinear propagation where the ray-tube 
area depends on the wave amplitude itself. However an extension to this case seems 
possible. 

This paper is part of a Doctorat d’Etat to be presented a t  Universitd de Paris VI. 
A preliminary version was presented at the 14th International Congress of Theoretical 
and Applied Mechanics, Delft, 1976. The author thanks Professor Pierre Alais and 
Professor Mariano Perulli for their constant support during the preparation of this 
work. He also gratefully acknowledges helpful discussions with Professor Jean Pierre 
Guiraud. 
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FIUIJRE 13. Ray tracing for a, souree situated off the jet axis at x! = 20, xi = 0.30, 4 = 0. 
Rays are emitted in the uo = 45' plane. (a) Projection on xl, x2 plane. (b)  Projection on xl, xs 
plane. (c) Projection on z2, xs plane. 
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FIGURE 14. Contours of transmission coefficient and lines of penetration of rays into the obser- 
vation sphere. x! = 2 0 ,  xi = 0.30, x! = 0, r1 = 0.10, r2 = 3 0 .  Aerodynamic conditions aa in 
figure 3. A unit transmission coefficient is represented by 10 dB. 
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FIGURE 15. Contours of transmission coefficient for radiation from the jet axis x; = 2 0 ,  xi = 0, 
x! = 0 (as in figure 6). A unit transmission coefficient is represented by 10 dB. 
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Appendix A 
In  table 1 we summarize the first-order geometrical acoustics theory for a time- 

dependent medium (Guiraud 1965; Hayes 1968; Bretherton & Garrett 1968; LighthiU 
1972). 

II = pressure 5 = velocity u = entropy 

Field description 

Dispersion relation 
Group velocity 

w = kc+k.v = h ( l + M . v )  
C, = C V + V  = c(v+M) 

Ray equations dCX/dt = v + cv 
d'kldt = - ~ V C  - VV . k 
dcw/dt = kac/at + k. b l a t  
dc$ldt = 0 

Wave action 
II; 1 II; 1 + M . v  A - - -= - -  

0 -  pa kc pc2 w 

Conservation equation aAo/at + V . C, A, = 0 

TABLE 1 

Appendix B 
In  table 2 we summarize the first-order geometrical acoustics theory for a time- 

independent medium (Blokhintsev 1946; Keller 1954). 

V 
5 0  = - - I T 0  

uo = 0 

p = N / ( l + M . v )  

Field description [ 51 = [ exp (ikoS - iwt) PC 

Eikonal equation (VS)* = (N-M.VS)' p = V S  

Group velocity C, = c(v+M) 

Ray equations 

Energy density 

d"XldS = N-' (v + M) 

Eo = (II:/pc2) (1 + M . V) = /loo 

dcp/dS = N-'[VN-(VM).p] 

Conservation equation V.C,Eo = 0 

TABLE 2 
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